

Technical Information

Technical Information

Revisions

Revision History

Table of Revisions

Date	Page	Changed	
Jun 2011	All	Major update	FA
Jan 2012	44-45	Change to 44 pages	FB

List of Abbreviations

ATEX Certificated for use in flammable environment

CLC Closed Loop Circuit

-DI PVE with **D**irection Indication.

EH Electro Hydraulic

-F PVE for **F**loat spool. Two variants: 4 pin with float at 75%. 6 pin with separate float

FMEA Failure Mode Effect Analysis

LED Light Emitting Diode

LS Load Sensing

LVDT Linear Variable Differential Transducer NC Solenoid valve in PVE Normally Closed.

NC-H Standard NC like in PVEH, NC-S Super like in PVES

NO Solenoid valve in PVE **N**ormally **O**pen

PLC **P**rogrammable **L**ogical **C**ircuit

PLUS+1 Trade mark for Sauer-Danfoss controllers and programming tool

Pp Pilot Pressure. The oil gallery for PVE actuation
PVB Proportional Valve Basic module. Valve slice
PVBS Proportional Valve Basic module Spool

PVBZ Proportional Valve Basic module Zero leakage

PVE Proportional Valve Electric actuator
PVEA PVE variant with 2-6% hysteresis

PVED PVE variant **D**igital controlled via CAN communication

PVEH PVE variant with 4-9% hysteresis
PVEM PVE variant with 25-35% hysteresis
PVEO PVE variant with **O**N/OFF actuation
PVEP PVE variant PWM controled

PVES PVE variant with 0-2% hysteresis PVEU PVE variant with $U_c = 0-10 \text{ V}$

PVG **P**roportional **V**alve Group. Multi section valve

PVHC Current controlled valve actuator

PVM **P**roportional **V**alve Manual control. Handle PVP **P**roportional **V**alve Pump side module. Inlet

PVS **P**roportional **V**alve end plate

PVSK Proportional Valve end plate Crane. Inlet module with Spool Control

PWM Pulse Width Modulation -R PVE with **R**amp function

-SP PVE with **S**pool **P**osition feedback

uC micro **C**ontroler

 U_{DC} Power supply **D**irect **C**urrent. Also called V_{bat} for battery voltage

U_s **S**teering voltage for the PVE control. Also called V_s

© 2012 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, the Sauer-Danfoss S-icon, PLUS+1™, What really matters is inside® and Know-How in Motion™ are trademarks of the Sauer-Danfoss Group.

Front cover illustrations: V310299, V310300, V310294, V310292, V310295, V310291, F300704, drawing 157-506.

Contents

Warnings	Reference		
	Standards	6	
	PVE with connector variants, Hirschmann or DIN, Deutsch and AMP	6	
- u		_	
General Information	Product Warnings		
	Introduction		
	PVE controlled PVG with PVSK		
	PVE stands for Proportional Valve Electrical actuator.		
	Available PVE variants		
	Overview		
	PVG 32 structural lay-out with naming	10	
Functionality	PVG Functionality	11	
•	PVE Functionality	11	
	Valve section with naming - standard mounted - seen from PVP	11	
	Hydraulic subsystem	12	
	Pilot oil diagram		
	Hydraulic variants: PVEA		
	NO2 and NO4 are replaced with orifices		
	PVE with ramp		
	Tank orifice has smaller diameter	13	
	PVE with bolts and connectors	14	
	Electronic subsystem		
	Function blocks for electronics	15	
Safety and Monitoring	Safety and Monitoring	16	
Safety and Monitoring	Fault monitoring and reaction		
	Spool Position Feedback (-SP)		
	Spool Position Feedback		
	Fault monitoring overview		
	Direction Indication Feedback (-DI)		
	Direction Indication Feedback		
	Values for both Direction Indicators, pin A and pin B		
Cafaty in Application	Puilding in Cafety	20	
Safety in Application	Building in Safety Hazard and Risk Analysis ISO 12100-1 / 14121		
	· · · · · · · · · · · · · · · · · · ·		
	Control System Example		
	Control system example Electrical block diagram for above illustration		
	Typical wiring block diagram example		
	Example of fault monitoring for deactivation of the hydraulic system		
	PVG32– Mainly used in system with fixed displacement pumps		
	PVG100 – Alternative LS dump or pilot supply disconnect		
	PVG100 – Alternative L3 dump of pilot supply disconnectPVG120 – Pump disconnect/block for variable pumps		
	1 varzo – rump disconnect/block for variable pumps	24	

Contents

PVE Control	PVE Control by Voltage	25
	PVE characteristic – control by voltage	
	Values for standard mounted PVE (PVEA/M/H/S)	
	PLUS+1 [™] compliance	
	ATEX PVE	
	PVEU – PVE with fixed control signal range	
	Signal voltage - PVEU	
	PVE controlled with PWM signal	
	Duty cycles - PVE (PVEA/M/H/S)	
	PVEP	
	PVEP schematic and characteristic	
	PVEP signals	
	PVEO	
	PVE to the Float Spool	
	PVE ON/OFF activation	
	PVEO schematic and characteristic	
	PVE characteristic – Float B	
	PVE characteristic – Float A	29
	Hysteresis	30
	PVES Series 4	30
	PVEA Series 4	30
	PVES voltage, position diagram	
	PVEH Series 4	
	PVEH voltage, position diagram	
	PVEA voltage, position diagram	
	PVE hysteresis overview	
Electrical Systems	Example of Use	
	23 FIII 300-D COIIIIeCtor With Nis Screws (MIL-DTE-24300)	
Data	Operating Parameters	
	Declaration of conformity.	
	Operating conditions	
	PVEO	
	PVEO Supply voltage	32
	Reaction time PVEO ON/OFF (minus PVG 120)	
	PVEA, PVEH and PVES	
	Reaction time PVEA, PVEH and PVES (minus PVG 120)PVEP	
	Oil consumption PVEO	32
	Oil consumption PVEA, PVEH and PVES	
	Enclosure and connector	
	Spool position curves	
	General Dimensions	
	PVE for PVG 32 and PVG 100	
	PVE with Hirschmann connector	
	PVE with AMP connector PVE with Deutsch connector	
	PVE for PVG 120	

Contents

Connection	and
Activation	

Code Numbers

Version ON/OFF	38
Connection PVEO with direction indication (DI)	38
Connection PVEO standard	38
Control all PVEO	
AMP version of PVEO–DI	
AMP version of PVEO/PVEO-R	
Hirschmann/DIN version of PVEO / PVEO-R	38
Deutsch version of PVEO	
Proportional Version	
Standard PVE	
Connection PVEA/PVEH/PVEM/PVES/PVEU - also with float B four pin	
Control (U _s) for standard mounted PVEA/ PVEH/ PVEM/ PVESn	
Control (U _s) for standard mounted PVEU	
Control (U_s) for standard mounted PVEH/PVEM float B four pin version	39
AMP version PVEA/PVEH/PVES/PVEU	
Hirschmann/DIN version PVEH/PVEM/PVES/PVEH float B/PVEM float B	
Deutsch version PVEA/PVEH/PVES/PVEU/PVEH float B	
Standard PVE with DI	
Connection PVE with direction indication (DI)	
Control (U _s) for standard mounted PVEA–DI/ PVEH–DI	40
Standard PVE with SP	
Connection PVE with Spool Position (SP)	
Control (U _s) for standard mounted PVEA-DI/ PVEH-DI	40
AMP version PVEA-DI/PVEH-DI Deutsch version PVEA-DI/PVEH-DI	
Deutsch version PVEA-DI/PVEH-DI	
PVE with separate Float pin	
Connection PVEH with float A six pin	
Control (U_s) for standard mounted PVEH/PVEM float A six pin version	
PVE with PWM controled – PVEP	Δ1
Connection PVEP	
Control (U _s) for standard mounted PVEP	
AMP with separate float pin	
Deutsch version with separate float pin	
Deutsch version with PVEP	
PVE Code Numbers for use on PVG 32 and PVG 100	42
AMP connector code numbers	
Deutsch connector code numbers	
Hirschmann/DIN connector code numbers	
ATEX (24 V) connector code numbers	
PVE Code Numbers for use on PVG 120	
Cables code numbers	43
AMP code numbers	
Hirschmann/DIN code numbers	43
ATEX (24 V) connector code numbers	43
Connector code numbers	43
Set of seals code numbers	
Connector Code Numbers at Other Suppliers	
Connector part numbers for purchase at other suppliers	12

Reference

Reference

Sauer-Danfoss Doc **520L0344**, *PVG 32 Proportional Valve Groups, Technical Information*. Sauer-Danfoss Doc **520L0720**, *PVG 100 Proportional Valve Groups, Technical Information*. Sauer-Danfoss Doc **520L0356**, *PVG 120 Proportional Valve Groups, Technical Information*. Sauer-Danfoss Doc **520L0665**, *PVED-CC Electro Hydraulic actuator, Technical Information* Sauer-Danfoss Doc **11070179**, *PVED-CX Electro Hydraulic actuator, Technical Information*.

Standards

- International Organization for Standardization ISO 13766 Earth moving machinery *Electromagnetic compatibility*.
- EN 50014:1997 +A1, A2: 1999
- EN 50028: 1987. For ATEX approved PVE
 - IEC EN 61508
 - ISO 12100-1 / 14121
 - EN 13849 (Safety related requirements for control systems)
 - Machinery Directive 2006/42/EC" (1st Edition December 2009)

PVE with connector variants: Hirschmann or DIN

Deutsch

AMP

Product Warnings

A Warning

All brands and all types of directional control valves – including proportional valves – can fail and cause serious damage. It is therefore important to analyze all aspects of the application. Because the proportional valves are used in many different operation conditions and applications, the machine builder/ system integrator alone is responsible for making the final selection of the products – and assuring that all performance, safety and Warning requirements of the application are met.

A Warning

A PVG with PVE can only perform according to description if conditions in this Technical Information are met.

Warning

In particularly exposed applications, protection in the form of a shield is recommended.

A Warning

When the PVE is in fault mode the quality of performance and validity of feedback is limited depending on the fault type.

A Warning

Error pins from more PVEs may not be connected. Inactive error pins are connected to ground and will disable any active signal.

A Warning

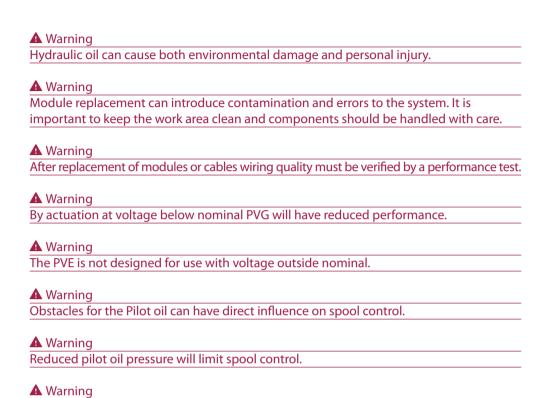
Error pins are signal pins and can only supply very limited power consumption.

🛕 Warning

Deviation from recommended torque when mounting parts can harm performance and module.

A Warning

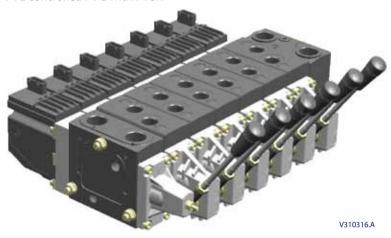
Adjustment of the position transducer (LVDT) will influence calibration, and thereby also safety and performance.


Warning

When replacing the PVE, the electrical and the hydraulic systems must be turned off and the oil pressure released.

Too high pilot oil pressure can harm the PVE.

Product Warnings (continued)


General Information

Introduction

PVE Series 4 is the common name for the Sauer-Danfoss PVG electrical actuator.

This technical information has focus on the analog actuators. The digital actuators PVED-CC and PVED-CX are covered in their special technical information.

PVE controlled PVG with PVSK

PVE stands for Proportional Valve Electrical actuator.

The Sauer-Danfoss PVE is built on more than thirty years experience of electrical valve control and is the perfect fit for our high performance proportional valves PVG32, PVG100 and PVG120.

All our products are developed in close cooperation with system manufacturers from the mobile hydraulic market. That is the reason for our high performance in all market segments

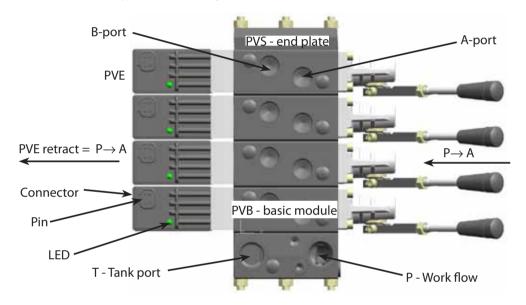
The PVE can be controlled from a switch, a joystick, a PLC, a computer or a Sauer-Danfoss PLUS+1™ micro-controller.

The PVE is available in multiple variants. A short list here just gives the main variations.

Available PVE variants

Available FVL valiants				
	On/Off			
Actuation	Proportional - Closed loop controlled			
	Proportional - Direct control			
	Voltage			
Control signal	PWM			
	Current			
	Standard precision			
Precision	High precision			
	Super high precision			
	Spool position			
Feedback	Direction indicator			
reeuback	Error			
	None			
	Deutsch			
Connectors	AMP			
	Hirschmann			
Fault detection	Active			
and reaction	Passive			
and reaction	None			
	11V – 32V multi-voltage			
Power supply	12V			
	24V			

General Information

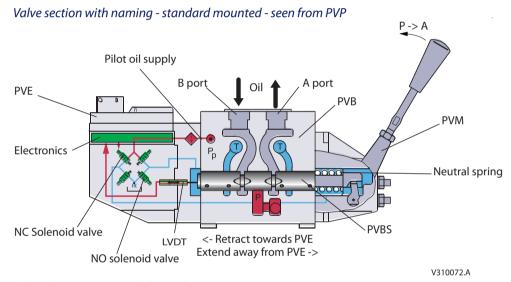

Overview

The PVG is a sectional spool valve stack with up to 12 individually controlled proportional valves. With the PVE the PVG can be operated as single valves or several valves in cooperation.

The oil flow out of the work section (A- or B-port) can be controlled by a combination of the following:

- PVE controlling the spool position using pilot oil pressure.
- A handle (PVM) in mechanical interface with the spool.

PVG 32 structural lay-out with naming


Functionality

PVG Functionality

The PVG valve distributes oil from pump flow to a particular work function in the application via a specific valve section. This is done by moving the spool (PVBS).

Depending on the choice of components the oil work flow enters the PVG through the PVP (proportional valve pump side module), a PVSK, a mid inlet or other system interface and enters the PVB (proportional valve basic module) via the P gallery and leaves through the T gallery. The PVP/PVSK also supplies the Pilot oil pressure (Pp) for the PVE to activate the spool (PVBS).

When looking at the figure you see the valve section from PVP towards PVS with the PVM and PVE standard mounted. When PVM and PVE are interchanged it's called option mounted.

Oil out of A-port = PVM pushed towards PVB = retract = LVDT moves into PVE.

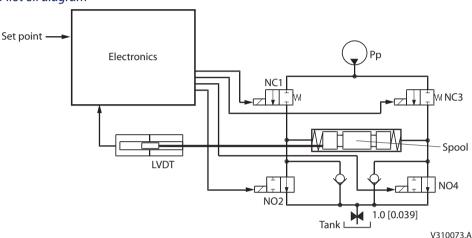
With the spool in neutral, default position when held by the neutral spring, the connection to the application via ports is blocked.

Moving the PVBS towards the PVE, as in the figure, opens a connection between P and A and also between B and T. This is done by either pushing the PVM or activating the PVE. The PVE moves the PVBS by letting Pilot Oil Pressure (Pp) push on the right end of the PVBS and releasing pressure from the left end. For details on PVG 32 please see *PVG 32 Proportional Valve Groups, Technical Information*, **520L0334**.

PVE Functionality

This section has focus on how the PVE works and interacts. The description here is general and variant specific descriptions will all refer to this.

The PVE is an electro mechanical device, meaning that functionality is depending on mechanical, hydraulic, electrical and control conditions given by PVE, PVG, application and vehicle. The result of this is that implementing operation and safety conditions also must include vehicle specific considerations.


Functionality

PVE Functionality (continued)

Hydraulic subsystem

The hydraulic subsystem is used for moving the spool and thereby open the valve for work flow.

Pilot oil diagram

The hydraulic sub system moves the spool and thereby opens the valve for work flow. The heart in the hydraulic subsystem is the solenoid valve bridge which controls the Pilot Pressure (Pp) on spool ends. It consist of four poppet valves, the two upper are normally closed (NC) and the two lower are normally open (NO). The Pp will work against the PVBS neutral spring when the spool is moved out of blocked (neutral) and together with the spring when going in blocked. This combined with a larger opening in the NO than in the NC will give a faster movement towards blocked than out of blocked.

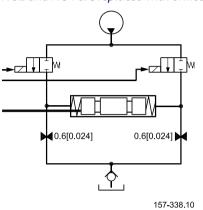
When the PVE is powered the solenoids are all put in closed state. To move the PVBS to the right NC1 and NO4 are opened and NC3 and NO4 are kept closed.

The activation of the solenoid valves represents oil consumption and thereby also a pressure drop in the pilot oil gallery. By simultaneous use of multiple PVE the Pp can fall and result in performance problems.

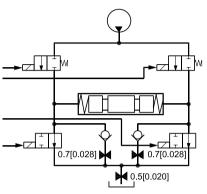
The two check valves next to the NO are anti-cavitation valves.

The orifice to tank reduces tank pressure spikes and can also be used for ramp function.

Warning


Obstacles for the Pilot oil pressure (Pp) can have direct influence on spool control. Reduced Pp will limit spool control. Too high Pp can harm the PVE.

PVE Functionality (continued)


Hydraulic variants: PVEA

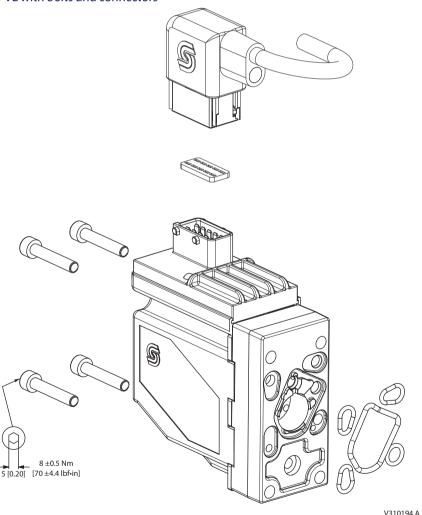
NO2 and NO4 are replaced with orifices.

PVE with ramp

Tank orifice has smaller diameter.

157-469.10

Functionality


PVE Functionality (continued)

Mechanical Subsystem

The mechanical subsystem gives interface to valve and control system and provides protection to hydraulic and electrical/electronic subsystem. The LVDT, not used on all variants, gives feed back to electronics on spool position. The LVDT is calibrated in production and recalibration should only be done in special cases. The standard PVE has an aluminum block for distributing pilot oil. PVE with anodized block are available.

The connector gives the electrical interface to power and control system. Sauer-Danfoss have a variety of connectors. We know that tradition and the aspects of serviceability are important when our customers choose. We have chosen the Deutsch connector as our main solution. The quality of wiring has direct influence on water integrity and signal quality therefore disturbance or changes in cabling can influence safety and performance.

PVE with bolts and connectors


Functionality

PVE Functionality (continued)

Electronic subsystem

The PVE (A/ H/ M/ S/ U) control signal is a low current voltage, a PWM can also be used. The PVEP has build-in a PWM evaluation and cannot be controlled by proportional voltage. The control signal is referred to as U_c .

Function blocks for electronics

The PVE features Closed Loop Control (CLC). This is made possible by on board electronics and an integrated feedback transducer that measures spool movement. The integrated electronics compensate for flow forces on the spool, internal leakage, changes in oil viscosity, pilot pressure, etc. This results in lower hysteresis and better resolution.

In principle the set-point determines the level of pilot pressure which moves the main spool. The position of the main spool is sensed in the LVDT which generates an electric feed-back signal registered by the electronics. The variation between the set-point signal and feed-back signal actuates the solenoid valves. The solenoid valves are actuated so that hydraulic pilot pressure drives the main spool into the correct position.

The LVDT (Linear Variable Differential Transducer) is an inductive transducer with very high resolution. When the LVDT is moved by the main spool a voltage is induced proportional to the spool position. The use of LVDT gives contact-free connection between mechanics and electronics. This means an extra long lifetime and no limitation as regards the type of hydraulic fluid used.

The PVEO and PVHC do not have embedded control electronics and do not support closed loop control.

Safety and Monitoring

Safety and Monitoring

The choice of PVE also decides the level of feedback and safety.

PVE are available with fault monitoring, spool direction indication, spool position feedback and separate float control.

The fault monitoring is available in PVEA/H/S/P and is a utilization of the ASIC.

Direction Indication is available in PVEO/A/H/S and they are dual powered PVE where separate pins give an active feedback for spool movement.

Spool position is a precise feedback on a separate pin giving actual position, but not with a redundant power supply.

The separate float control is a protection against unintended float activation.

The PVEM and PVEO do not have fault monitoring.

Fault monitoring and reaction

The fault monitoring system is available in two versions:

- **Active fault monitoring** provides a **Warning** signal and deactivates the solenoid valves. A reboot of the PVE is required to reactivate.
- Passive fault monitoring provides a Warning signal only. A reboot is not required.

Both active and passive fault monitoring systems are triggered by the same three main events:

1. Control signal monitoring

The Control signal voltage (U_s) is continuously monitored. The permissible range is between 15% and 85% of the supply voltage. Outside this range the section will switch into an error state. A disconnected U_s pin (floating) is recognized as neutral set point.

2. Transducer supervision

The internal LVDT wires are monitored. If the signals are interrupted or short-circuited, the PVE will switch into an error state.

3. Supervision of spool position

The actual position must always correspond to the demanded position (U_s). If the actual spool position is further out from neutral than the demanded spool position (>12%, PVEA: >25%) or in opposite direction, the PVE will switch into an error state. Spool position closer to neutral and in same direction will not cause an error state. The situation is considered "in control".

4. Float monitoring

Float must be entered or left within a time limit. On the six pin float PVE too high delay will cause an error state. The float Time Outs has own thresholds.

The neutral position has a tolerance of 0,5 mm relative the calibrated neutral position.

SAUER PVE Series 4 for PvG 5. DANFOSS Technical Information PVE Series 4 for PVG 32, PVG 100 and PVG 120 Safety and Monitoring

Safety and Monitoring (continued)

Active fault reaction is activated after 500 ms of error (PVEA: 750 ms).

- The solenoid valve bridge is disabled and the PVBS is released to spring control
- The error pin is powered*
- The LED change color
- The state is memorized and continues until PVE reboot

Passive fault reaction is activated after 250 ms of error (PVEA: 750 ms)

- The solenoid valve bridge is **NOT** disabled and the PVBS is **NOT** released
- The error pin is powered*
- The LED change color
- The state is active for minimum 100 ms and is reset when error disappears
- * for PVE with direction indication both DI pins goes low by fault.

Warning

Error pins from more PVEs may not be connected. Not activated error pins are connected to ground and will disable any active signal.

Error pins are signal pins and can only supply very limited power consumption.

To avoid the electronics in undefined state a general supervision of power supply (U_{po}) and internal clock frequency is implemented. This function applies to PVEA, PVEH, PVEP and PVES independently of fault monitoring version and PVEM - and will not activate fault monitoring.

The solenoid valves are disabled when:

- the supply voltage exceeds 36 V
- the supply voltage falls below 8.5 V
- the internal clock frequency fails

Safety and Monitoring

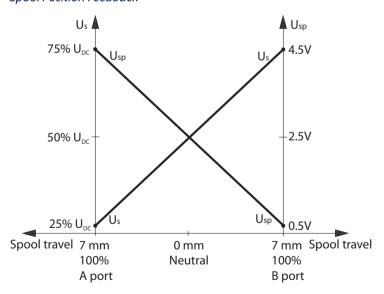
Safety and Monitoring (continued)

Fault monitoring overview

Туре	Fault monitoring	Delay before error out	Error mode	Error output status	Fault output on PVE 1)	LED light	Memory (reset needed)
PVEO PVEM	No fault monitoring	-	-	-	-	-	-
			No fault	Low	< 2 V	Green	-
	Active	500 ms (PVEA: 750 ms)	Input signal faults	High	~U _{DC}	Flashing red	Yes
PVEA			Transducer (LVDT)			Constant red	
PVEH			Close loop fault				
PVEP	Passive	250 ms (PVEA: 750 ms)	No fault	Low	< 2 V	Green	-
PVES			Input signal faults	High	~U _{DC}	Flashing red	
			Transducer (LVDT)			Constant red	No
			Close loop fault			Constant red	
PVE		500 ms	Float not active				
Float six pin	Active	750 ms	Float still active	High	~U _D	Constant red	Yes

¹⁾ Measured between fault output pin and ground.

A Warning


It's up to the customer to decide on the required degree of safety for the system.

ON DI the DI pins go low when error out goes high.

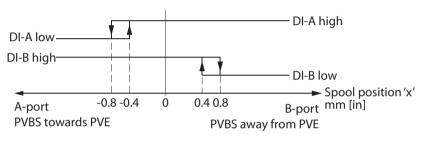
Spool Position Feedback (-SP)

The –SP functionality is a 0,5V to 4,5V inverted feedback with 2,5V as neutral value.

Spool Position Feedback

Safety and Monitoring

Direction Indication Feedback (-DI)


PVE with build in indication for spool movement direction are available.

The PVE–DI has dual power supply. U_{DC1} only supplies solenoid valves. U_{DC2} supplies electronics and feed back. The PVE does not work without U_{DC2} . DI-A and DI-B are relative standard mounting.

The DI has two direction feeedback signals with output high (close to U_{DC}) when the spool is in neutral position. If the spool moves out of neutral position, the direction signal switches to low (< 0.2 V). One of the signals goes low by spool ~0,8 mm out of neutral and high by spool within 0,4 mm out of neutral.

Both direction indication signals go low when the error indicator goes high.

Direction Indication Feedback

157-435.10

As shown in the figure, both "DI-A" and "DI-B" signals are "High" when the spool is in neutral position.

When the spool is moving in the A direction, the "DI-A" signal goes "Low" and the "DI-B" signal stays "High".

The reverse is true when the spool is moved in the B direction.

Values for both Direction Indicators, pin A and pin B

Transition to low from high	0.8 ± 0.1 mm [0.031 in]
Transition to high from low	0.4 ± 0.1 mm [0.015 in]
Transition to low both pins	error pin goes high
Maximum load of "DI-A", "DI-B"	50 mA
Voltage U _{DC} high by load 20 mA	> U _{DC} -1.5 V
Voltage U _{DC} high by load 50 mA	> U _{DC} -2.0 V
Voltage low	< 0.2 V

PVE Series 4 for PVG 32, PVG 100 and PVG 120 Technical Information Safety in Application

Building in Safety

All makes and all types of control valves (incl. proportional valves) can fail. Thus the necessary protection against the serious consequences of function failure should always be built into the system. For each application an assessment should be made for the consequences of pressure failure and uncontrolled or blocked movements.

To determine the degree of protection that is required to be built into the application, system tools such an FMEA (Failure Mode and Effect Analysis) and Hazard and Risk Analysis can be used.

FMEA (Failure Mode and Effect Analysis) IEC EN 61508

FMEA is a tool used for analyzing potential risks. This analytical technique is utilized to define, identify, and prioritize the elimination or reduction of known and/or potential failures from a given system before it is released for production.

Please refer to IEC FMEA Standard 61508.

Hazard and Risk Analysis ISO 12100-1 / 14121

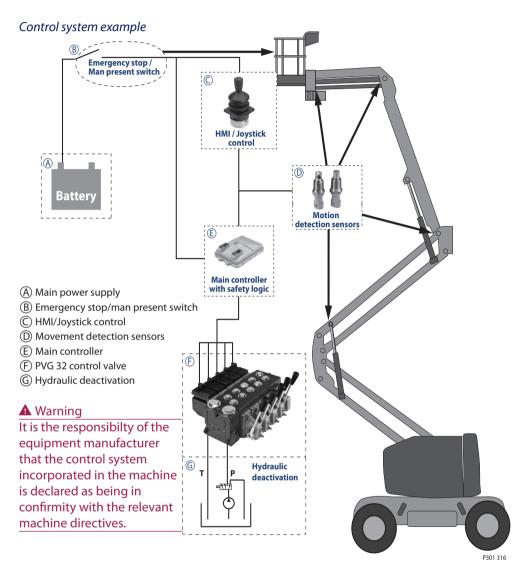
This analysis is a tool used in new applications as it will indicate whether there are special safety considerations to be meet according to the machine directives EN 13849. Dependent on the determined levels conformety this analysis will detirmine if any extra requirements for the product design, development process, production process or maintenance, i.e. the complete product life cycle.

A Warning

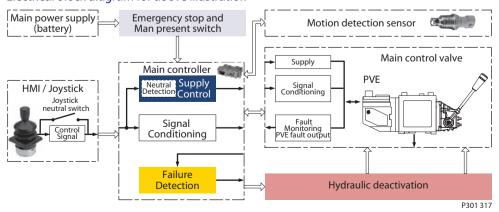
All makes/brands and types of directional control valves – inclusive proportional valves – can fail and cause serious damage. It is therefore important to analyze all aspects of the application.

Because the proportional valves are used in many different operation conditions and applications, the manufacturer of the application is alone responsible for making the final selection of the products – and assuring that all performance, safety and warning requirements of the application are met.

The process of choosing the control system – and safety levels – is governed by the machine directives EN 13849 (Safety related requirements for control systems).



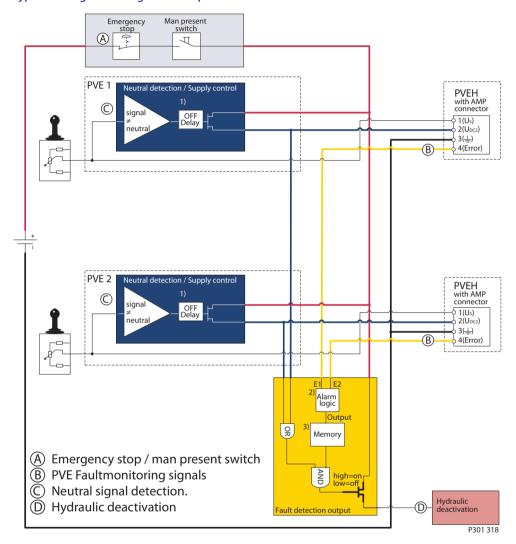
Technical Information


Safety in Application

Control System Example

Example of a control system for manlift using PVE Fault monitoring input signals and signals from external sensors to ensure the PLUS+1[™] main controllers correct function of the manlift.

Electrical block diagram for above illustration



PVE Series 4 for PVG 32, PVG 100 and PVG 120 Technical Information Safety in Application

Control System Example (continued)

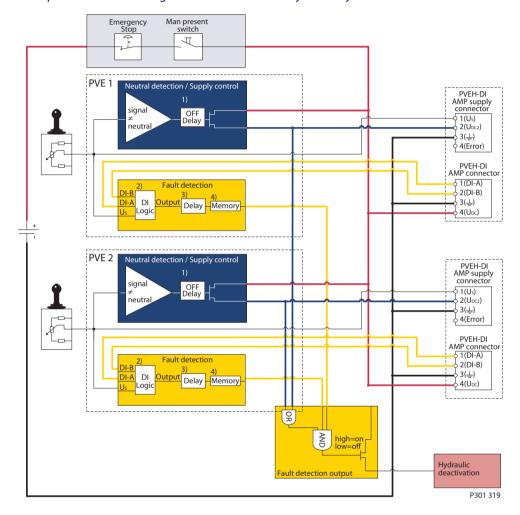
Example of a typical wiring block diagram using PVEH with neutral power off switch and fault monitoring output for hydraulic deactivation.

Typical wiring block diagram example

System Control Logic e.g. PLUS+1™ for signal monitoring and triggering signal for deactivation of the hydraulic system.

A Warning

It is the responsebilty of the equipment manufacturer that the control system incorporated in the machine is declared as being in confirmity with the relevant machine directives.



PVE Series 4 for PVG 32, PVG 100 and PVG 120 Technical Information Safety in Application

Control System Example (continued)

Similar to previous example using fault monitoring for deactivation of the hydraulic system with extra fault inputs using the PVE's with DI (Direction Indication) function.

Example of fault monitoring for deactivation of the hydraulic system

System Control Logic e.g. PLUS+ 1^m for signal monitoring and triggering signal for deactivation of the hydraulic system.

A Warning

It is the equipment manufacturers responsibility to ensure that the control system incorporated in the machine is declared as being in conformity with the relevant machine directives.

SAUER PVE Series 4 for PVG 3. Technical Information PVE Series 4 for PVG 32, PVG 100 and PVG 120 Safety in Application

Control System Example (continued)

Other non-electrical modules which can be used in connection with hydraulic deactivation at different levels.

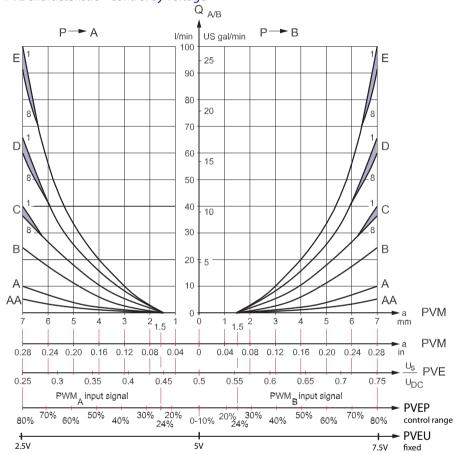
PVG32- Mainly used in system with fixed displacement pumps

- PVSK, commonly used in crane application full flow dump
- PVPE, full flow dump for the PVG 120

PVG100 – Alternative LS dump or pilot supply disconnect

- PVPP, pilot oil supply shut off
- External cartridge valve connecting LS Pressure to Tank
- External cartridge valve connecting main Pressure to Tank

PVG120 – Pump disconnect/block for variable pumps


• PVPX, LS dump to tank

PVE Control by Voltage

- The standard PVE is controlled with a low current voltage signal.
- The spool stroke is proportional to the control voltage (U_c).
- The power is supplied via the supply wire $(U_{RAT} \text{ or } U_{DC})$.
- The ratio U_s / U_{DC} define the actuation.
- A not connected U_s pin (floating) is recognized as $U_s = \frac{1}{2}U_{DC}$

PVE characteristic – control by voltage

Values for standard mounted PVE (PVEA/M/H/S)

Function	Signal voltage (U _s)	
Neutral	$U_S = 0.5 \cdot U_{DC}$	
$Q: P \rightarrow A$	$U_{\rm S} = (0.5 \rightarrow 0.25) \cdot U_{\rm DC}$	
$Q: P \rightarrow B$	$U_{\rm S} = (0.5 \rightarrow 0.75) \cdot U_{\rm DC}$	

PLUS+1[™] compliance

PVEA, PVEH, PVES, PVEO, PVEP and PVED can be controlled by PLUS+1.

The U_{DC} has a capacitance of 2,2uF which can give problems with some micro-controller power supply. To eliminate this problem Sauer-Danfoss has designed a special resistance supply and control cable.

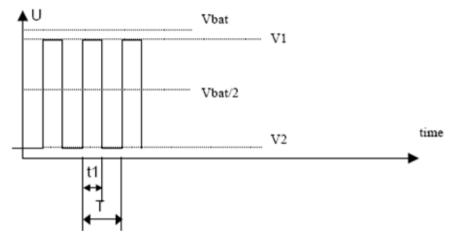
ATEX PVE

The Sauer-Danfoss PVE ATEX portfolio has the same monitoring and control characteristics as the equivalent standard PVE.

PVE Control by Voltage (continued)

PVEU - PVE with fixed control signal range

TThe PVEU (PVE 0-10V) is designed for PLC / microcontroller(uC) control hence the U. The control signal U_s is fixed 0 V to 10 V independent of supply voltage U_{DC} .


Signal voltage - PVEU

Function		Signal voltage PVEU
١	Neutral	5V
(Q: $P \rightarrow A$	5V → 2,5V
($Q: P \to B$	5V → 7,5V

PVE controlled with PWM signal

The standard PVE, PVEA/M/H/S, can also be controlled by a pulse with modulated PWM signal.

The V1 and V2 for PWM must be symmetrically located around U_{DC2} and V1 \leq U_{DC} .

Duty cycles - PVE (PVEA/M/H/S)

Function	Duty cycle (dc) PVEA/M/H/S	
Neutral	50% dc	
$Q: P \rightarrow A$	$50\% dc \rightarrow 25\% dc$	
Q: $P \rightarrow B$	$50\% dc \rightarrow 75\% dc$	

Sauer-Danfoss recommends PWM frequency:

- PVEM > 200 Hz
- PVEA/H/S > 1 kHz

▲ Warning

The PWM is not evaluated by the PVE so variance/failure in period (T) will not be detected.

PVE Control by Voltage (continued)

PVEP

The PVEP is designed for PWM control signals only.

PVEP schematic and characteristic

It is important that the Power supply (U_{DC}) is connected before the PWM signal.

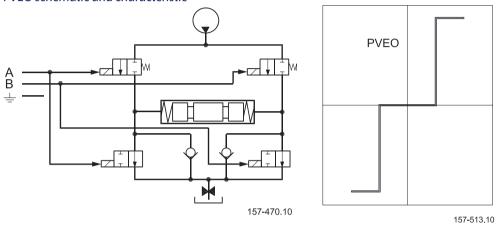
PWM signals are low power voltage signals; hence no current drivers are needed. Current control is not possible with PVEP.

The PVEP performs a true time difference measurement on the PWM input, thus there is no filtering or conversion involved.

PWM frequency can be chosen between 100 to 1000 Hz.

PVEP signals

Duty cycle A-signal (pin 1)	Duty cycle B-signal (pin 1)	Function	Error Pin output (pin 3)
0%	0%		
10%	0%	Neutral	Low
0%	10%		
≥ 10%	≥ 10%	Fault (Error)	High
< 10%	10 → 80%	B-port flow	Low
10 → 80%	< 10%	A-port flow	Low
A > 86%	B > 86%	Fault (Error)	High



PVEO

PVE ON/OFF activation

The PVEO has two independent powered sets of solenoids. By powering a set of pins the actuator is activated. By standard mounted PVE the A set gives full flow on A port and B gives on B port. Both directions activated at same time will keep the spool in neutral.

PVEO schematic and characteristic

A Warning

The PVEO is designed to have $U_{DC}=12 \text{ V}$ or $U_{DC}=24 \text{ V}$. The solenoids might be activated by voltage down to 6 V.

PVE to the Float Spool

Sauer-Danfoss has developed two PVE variants to support the float spool.

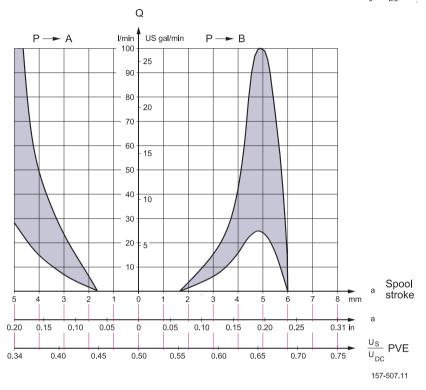
The float PVBS is a four position PVBS, where as the standard is a three position giving another characteristic for positioning and flow. This variation is covered by the built-in electronics.

There are two variants of float PVBS.

- Float B 1,5 mm dead band, max flow at 4,8 mm. Float at B = 8 mm, from 6 mm partial float.
- Float A 0,8 mm dead band, max flow at 5,5 mm. Float at A = 8 mm, from 6,2 mm partial float (PVBZ).

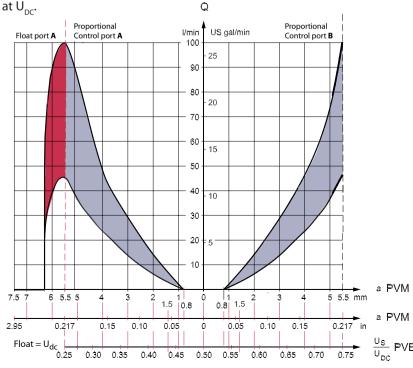
PVEM-F and PVEH-F with four pin connector are for float B and gives no built-in protection against entering float.

PVEH-F with six pin connector is for float A and gives protection against entering float.


PVE Series 4 for PVG 32, PVG 100 and PVG 120 SAUER PVE Series 4 for PVG 32 Technical Information

PVE Control

PVE to the Float Spool (continued)

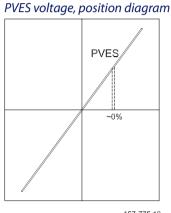

PVE characteristic – Float B

PVBS maximum float is 4.8 mm [0.19 in]. PVE has four pins. Float at $U_s/U_{DC} = 0.75$

PVE characteristic - Float A

PVBS maximum float is 5.5 mm [0.22 in]. PVE has six pins. Float when special pin powered

Technical Information

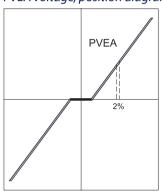

Activation PVE

Hysteresis

The controllability of the PVE depends on the solenoid valve bridge and the electronic capacity of the module. Hysteresis is a measurement on spool position precision and repeatability. Hysteresis is not a description of position maintenance.

PVES Series 4

The PVES has an ASIC closed loop circuit and the NC-S solenoids.

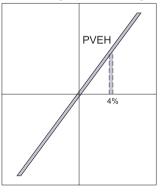


157-775.10

PVEA Series 4

The PVEA has an ASIC closed loop circuit, standard NC solenoids and orifice instead of NO solenoids.

PVEA voltage, position diagram



157-510.10

PVEH Series 4

The PVEH has an ASIC closed loop circuit and the standard NC solenoids.

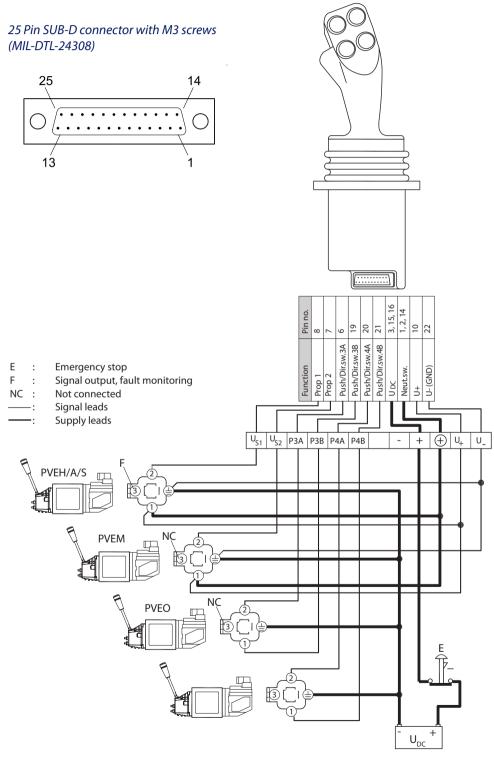
PVEH voltage, position diagram

157-511.10

PVE hysteresis overview

PVE	S	A	н	М
Maximum	2 %	6 %	8.6 %	35 %
Typical	<1/2 %	2 %	4 %	25 %

PVEP has the PVES characteristic.


PVEU is available with both standard PVEH and super fine PVES characteristic.

Electrical Systems

Example of Use

Signal leads must not act as supply leads at the same time unless the distance between the actuator module PVE and terminal board is less than 3 m [3.3 yards] and the lead cross-section is min. 0.75 mm² [AWG 18].

Technical Information

Technical Data

Operating Parameters

Declaration of conformity.

The PVEA/H/P/S/U have CE marking according to the EU directive EMC Directive 2004/108/EC. The declarations are available at Sauer-Danfoss.

The PVEO/M are not subject to this directive.

Operating conditions

The PVE is designed for use with pilot oil supply. Use without oil supply can harm the system.

The PVE is designed for use with pilot pressure range 10 to 15 bar [145 to 220 PSI]. Intermittent pressure peaks up to 50 bar [725 PSI] can be accepted.

Intermittent is no longer than 5 seconds and not more than once per minute.

The following technical data are from typical test results. For the hydraulic system mineral based hydraulic oil with a viscosity of 21 mm 2 /s [102 SUS] and a temperature of 50 °C [122 °F] was used.

PVEO

PVEO Supply voltage

	rated	12 V _{DC}	24 V _{DC}
Supply voltage U _{DC}	range	11 ÷ 15 V	22 ÷ 30 V
	max. ripple	5 %	5 %
Current consumption	Typical	365 mA	740 mA
	minimum	290 mA	550 mA
	maximum	420 mA	820 mA
Current via DI	maximum	100 mA	

Reaction time PVEO ON/OFF (minus PVG 120)

Position time in coconda		PVEO	PVEO with ramp
Reaction time in seconds		s	s
F	max.	0.18	0.35
From off to max. spool travel (rated voltage)	rated	0.12	0.25
	min.	0.235	0.41
From maximum spool travel	max.	0.175	0.33
to blocked position	rated	0.09	0.27
(power disabled)	min.	0.065	0.25

PVEA, PVEH and PVES

	rated	11 ÷ 32 V	
Supply voltage U _{DC}	range	11 ÷ 32 V	
	max. ripple	5 %	
Current consumption at rated voltage	PVEH/PVES (PVEA)	0.57 (0.33) A @ 12 V 0.3 (0.17) A @ 24 V	
Cinnal valta na	neutral	0.5 x U _{DC}	
Signal voltage	A-port ↔ B-port	0.25 ÷ 0.75 • U _{DC}	
Signal current at rated voltage		0.25 ÷ 0.70 mA	
Input impedance in relation to 0.5 • U _{DC}		12 ΚΩ	
Power consumption	PVEH/PVES (PVEA)	7 (3.5) W	
Error pin	max current	100 mA	

Technical Data

Operating Parameters (continued)

PVFP

IVE	
Supply voltage \mathbf{U}_{DC} range	11 ÷ 32 V
Supply voltage U _{DC} max. ripple	5%
Supply voltage U _{DC} over voltage (max. 5 min)	36 V
PWM control range (duty cycle)	10 ÷ 80%
PWM frequency	100 ÷ 1000 Hz
PWM input voltage swing	0 - U _{DC}
PWM Trigger point	70% of U _{DC}
Input impedance (standard pull down)	5 kΩ
Input capacitor	
Power consumption	7 W
Error voltage: Fault	U _{DC}
Error voltage: No Fault	< 2 V

All connector terminals are short-circuit protected, protected against reverse connection and their combinations. Connecting error pins from two or more PVE's will cause the surveillance system to malfunction.

Reaction time PVEA, PVEH and PVES (minus PVG 120)

Supply voltage	Function		PVEA Prop. fine s	PVEH Prop. high s	PVES Prop. super s	PVEP PWM Ctrl s
		max.	0.500	0.230	0.230	0.230
	Reaction time from neutral position to max. spool travel	rated	0.320	0.150	0.150	0.150
Disconnected	to make specification	min.	0.250	0.120	0.120	0.120
by means of neutral switch		max.	0.550	0.175	0.175	0.175
	Reaction time from max. spool travel to neutral position	rated	0.400	0.090	0.090	0.090
		min.	0.300	0.065	0.065	0.065
		max.	0.500	0.200	0.200	0.200
	Reaction time from neutral position to max. spool travel	rated	0.320	0.120	0.120	0.120
	to max. spoor traver	min.	0.250	0.050	0.050	0.050
Constant voltage		max.	0.250	0.100	0.100	0.100
	Reaction time from max. spool travel to neutral position	rated	0.200	0.090	0.090	0.090
	to fleatial position	min.	0.150	0.065	0.065	0.065
Hysteresis* rated		rated	2%	4%	0%	5%

^{*} Hysteresis is indicated at rated voltage and f=0.02 Hz for one cycle (one cycle = neutral \rightarrow full A \rightarrow full B \rightarrow neutral.

Operating Parameters (continued)

Oil consumption PVEO

Technical Data

Function		Supply Voltage	PVEO
	neutral*	OFF	0 l/min [0 US gal/min]
Pilot oil flow for PVE	locked*	ON	0.1 l/min [0.026 US gal/min]
	continuous actuations*		0.7 l/min [0.185 US gal/min]

^{* 12} bar [174 psi] and 21 mm²/s [102 SUS]

Oil consumption PVEA, PVEH and PVES

Function	Function Supply PVEA Voltage prop. fine		PVEH prop. high	PVES prop. super	
	neutral*	OFF	0 l/min	0 l/min	0.3 l/min
Dilet ell			[0 US gal/min]	[0 US gal/min]	[0.106 US gal/min]
Pilot oil flow for	locked*		0.4 l/min	0.1 l/min	0.1 l/min
PVE	locked.	ON	[0.106 US gal/min]	[0.026 US gal/min]	[0.026 US gal/min]
continuous actuations*	ON	ON 1.0 l/min	0.7 l/min	0.8 l/min	
	Continuous actuations		[0.264 US gal/min]	[0.185 US gal/min]	[0.211 US gal/min]

^{* 12} bar [174 psi] and 21 mm²/s [102 SUS]

Oil viscosity

0:1	range	12 ÷ 75 mm ² /s [65 ÷ 347 SUS]
Oil viscositv	min.	4 mm ² /s [39 SUS]
Viscosity	max.	460 mm ² /s [2128 SUS]

Pilot pressure

Pilot pressure nom.		13.5 bar [196 psi]
(relative to	min.	10.0 bar [145 psi]
T pressure)	max.	15.0 bar [217 psi]

Oil temperature

0.11	range	30 ÷ 60°C [86 ÷ 140°F]
Oil temperature	min.	-30°C [-22°F]
temperature	max.	90°C [194 °F]

Operating temperature

	Min	Max
Ambient	-30°C [-22°F]	60°C [140°F]
Stock	-40°C [-40°F]	90°C [194°F]
Recommended		
long time storage	10°C [50°F]	30°C [86°F]
in packaging		

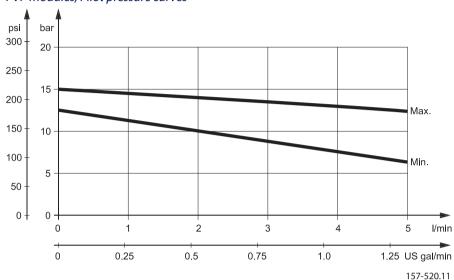
Filtering in the hydraulic system

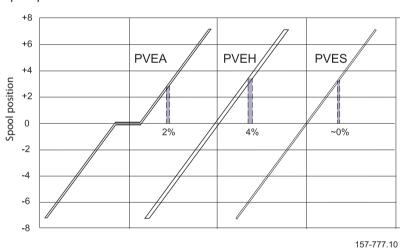
Max. allowed degree of contamination	18/16/13 (ISO 4406, 1999 version)
--------------------------------------	-----------------------------------

For further information see Sauer-Danfoss documentation, {\bf 520L0464}.

Enclosure and connector

Version of connector	Hirschmann connector	AMP JPT connector	Deutsch connector
Grade of enclosure*	IP 65	IP 66	IP 67


^{*} According to the international standard IEC 529 NB: In particulary exposed applications, protection in the form of screening is recommended.


Technical Data

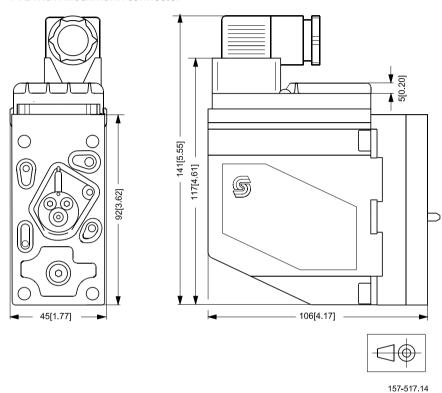
Operating Parameters (continued)

PVP modules, Pilot pressure curves

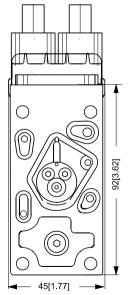
Spool position curves

▲ Warning

It's up to the customer to decide on the required degree of safety for the system.



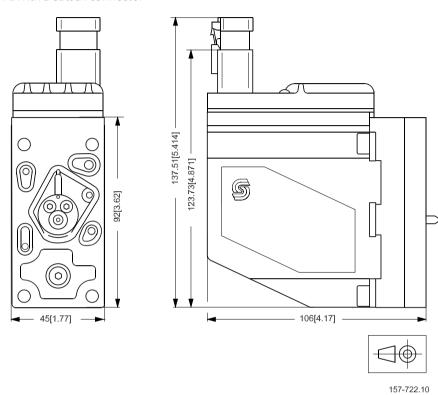
Data

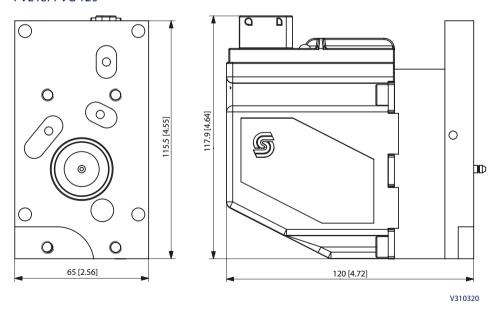

General Dimensions

PVE for PVG 32 and PVG 100

PVE with Hirschmann connector

PVE with AMP connector


157-394.14


Data

General Dimensions (continued)

PVE with Deutsch connector

PVE for PVG 120

Height for PVE 120 is the same as for PVE 32 with same connector type.

Technical Information

Connection and Activation

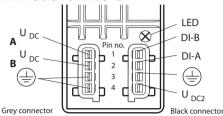
Version ON/OFF

Connection PVEO with direction indication (DI)

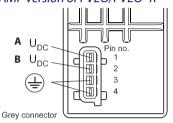
Connector 1	A U _{DC}	B U _{DC}	Gnd	Gnd
AMP (grey)	p 1	p 2	р3	p 4
Connector 2	DI-B	DI-A	Gnd	U _{DC 2}

Connection PVEO standard

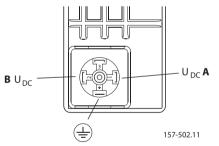
Connector	Α	В
AMP Hirschmann/DIN	pin 1	pin 2
Deutsch	pin 1	pin 4


Function	A (pin 1)	B (pin 2)
Neutral	0	0
Q: $P \rightarrow A$	U _{DC}	0
Q: $P \rightarrow B$	0	U _{DC}

Control all PVEO


Connector	Α	В
AMP Hirschmann/DIN	pin 1	pin 2
Deutsch	pin 1	pin 4

- Ground pins are internally connected.
- Pin 3 is not connected on Hirschmann/DIN version of PVEO.
- U_{DC2} supplies electronics for feedback signal on PVEO-DI.


AMP version of PVEO-DI

AMP version of PVEO/PVEO-R

Hirschmann/DIN version of PVEO / PVEO-R

Deutsch version of PVEO

Technical Information

Connection and Activation

Proportional Version

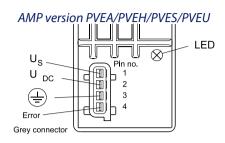
Standard PVE

Connection PVEA/PVEH/PVEM/PVES/PVEU - also with float B four pin

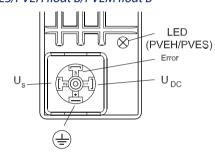
Connector	U _s	U _{DC}	Gnd	Error
AMP	pin 1	pin 2	pin 3	pin 4
Hirschmann/ DIN	pin 2	pin 1	gnd	pin 3
Deutsch	pin 1	pin 4	pin 3	pin 3

- On PVEM the error pin is not used and not connected (pin 3 Hirschmann/DIN).
- Ground pins are internally connected.

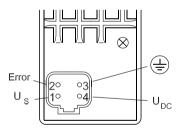
Control (U_s) for standard mounted PVEA/ PVEH/ PVEM/ PVESn


Function	Voltage relative	PWM
Neutral	0,5 • U _{DC}	50%
Q: $P \rightarrow A$	$0.5 \rightarrow 0.25 \cdot U_{DC}$	50% → 25%
Q: $P \rightarrow B$	$0.5 \rightarrow 0.75 \cdot U_{DC}$	50% → 75%

Control (U_s) for standard mounted PVEU


Function	PVEU
Neutral	5 V
$Q: P \rightarrow A$	5 V → 2,5 V
Q: $P \rightarrow B$	5 V → 7,5 V

Control (U_s) for standard mounted PVEH/ PVEM float B four pin version


Function	Voltage relative	PWM
Neutral	0,5 • U _{DC}	50%
$Q: P \rightarrow A$	$0.5 \rightarrow 0.34 \cdot U_{DC}$	50% → 34%
Q: $P \rightarrow B$	$0.5 \rightarrow 0.65 \cdot U_{DC}$	50% → 65%
Float	0,75 • U _{DC}	75%

Hirschmann/DIN version PVEH/PVEM/ PVES/PVEH float B/PVEM float B

Deutsch version PVEA/PVEH/PVES/PVEU/ PVEH float B

Technical Information

Connection and Activation

Proportional Version (continued)

Standard PVE with DI

Connection PVE with direction indication (DI)

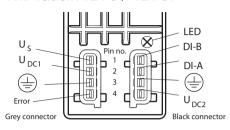
Connector 1	U _s	U _{DC 1}	Gnd	Error
AMP (grey)	p 1	p 2	р3	p 4
Deutsch	p 1	p 4	р3	р2
Connector 2	DI-B	DI-A	Gnd	U _{DC 2}
Connector 2 AMP (black)	DI-B p 1	DI-A p 2	Gnd p3	U _{DC 2}

Control (U_s) for standard mounted PVEA–DI/ PVEH–DI

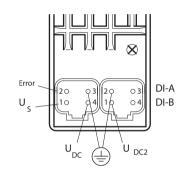
Function	U _s	PWM
Neutral	0,5 • U _{DC}	50%
Q: $P \rightarrow A$	$0.5 \rightarrow 0.25 \cdot U_{DC}$	50% → 25%
Q: $P \rightarrow B$	0,5 → 0,75 • U _{DC}	50% → 75%

- Ground pins are internally connected.
- U_{DC2} only supplies electronics for feedback signal and error pin on PVEA-DI / PVEH-DI. Two separate power sources can be used.

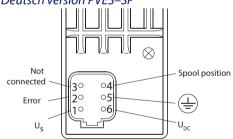
Standard PVE with SP


Connection PVE with Spool Position (SP)

Connector	U _s	Error	SP	Gnd	U _{DC}
Deutsch	p 1	p 2	p 4	p 5	р6


Control (U_s) for standard mounted PVEA–DI/ PVEH–DI

Function	U _s	PWM
Neutral	0,5 • U _{DC}	50%
$Q: P \rightarrow A$	$0.5 \rightarrow 0.25 \cdot U_{DC}$	50% → 25%
$Q: P \to B$	$0.5 \rightarrow 0.75 \cdot U_{DC}$	50% → 75%


AMP version PVEA-DI/PVEH-DI

Deutsch version PVEA-DI/PVEH-DI

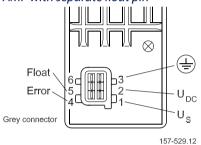
Deutsch version PVES-SP

Technical Information

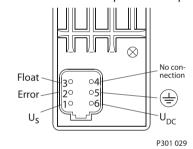
Connection and Activation

Proportional Version (continued)

PVE with separate Float pin


Connection PVEH with float A six pin

Connector	U _s (control)	U _{DC} (power)	Float	Ground	Error
AMP	pin 1	pin 2	pin 5	pin 3	pin 4
Deutsch	pin 1	pin 6	pin 3	pin 5	pin 2

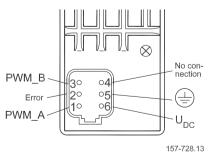

Control (U_s) for standard mounted PVEH/ PVEM float A six pin version

Function	Voltage relative	PWM		
Neutral	0,5 • U _{DC}	50%		
$Q: P \rightarrow A$	$0.5 \rightarrow 0.25 \cdot U_{DC}$	50% → 25%		
Q: $P \rightarrow B$	$0.5 \rightarrow 0.75 \cdot U_{DC}$	50% → 75%		
Float	U _{DC} on Float pin			

AMP with separate float pin

Deutsch version with separate float pin

PVE with PWM controled - PVEP


Connection PVEP

Connector	PWM A	Error	PWM B	Gnd	U _{DC}
Deutsch	p 1	p 2	р3	p 5	р6

Control (U) for standard mounted PVEP

Function	Voltage relative	PWM
Neutral	< 10%	< 10%
Q: $P \rightarrow A$	10% → 80%	< 10%
Q: $P \rightarrow B$	< 10%	10% → 80%

Deutsch version with PVEP

Code Numbers

PVE Code Numbers for use on PVG 32 and PVG 100

AMP connector code numbers

Feature		S	std.	float A	DI	anodized	ramp-ano	ramp
Connecto	r	super fine hysteresis	1x4	1x6	2x4	1x4	1x4	1x4
PVEA	active		157B4734		157B4736			
PVEA	passive		157B4735		157B4737	157B4775		
מערון	active		157B4034	157B4338	157B4036	157B4074		
PVEH	passive		157B4035		157B4037	157B4075		
PVES	active	S	157B4834					
PVES	passive	S	157B4835			157B4865		
	active	S	11089091					
PVEU	active		157B4044					
	passive		157B4045					
PVEO	12V		157B4901		157B4906			157B4903
PVEO	24V		157B4902		157B4905	157B4272	157B4274	157B4904

1x4 = one plug four pins

1x6 = one plug six pins

S = super fine hysteresis

Deutsch connector code numbers

Feature	•	S	std.	float A	float B	DI	SP	Fast-no memory
Connec	tor	super fine hysteresis	1x4	1x6	1x4	2x4	1x6	1x4
PVEA	active		157B4792			157B4796		
PVEH	active		157B4092	157B4398		157B4096		
PVEH	passive		157B4093		157B4392			
PVES	active	S	157B4892					157B4894
PVES	passive	S	11089276				11020776	
PVEP	active	S	11034832 *					
PVEU	passive	S	11089090					
DVEO	12V		157B4291					
PVEO	24V		157B4292					

1x4 = one plug four pins;

*1x6 = one plug six pins;

S = *super fine hysteresis;*

Hirschmann/DIN connector code numbers

Feature		S	std.	float B	anodized	ramp
Connector		super fine hysteresis	1x4	1x4	1x4	1x4
PVEH	active		157B4032	157B4332	157B4073	
PVEN	passive		157B4033			
PVES	active	S	157B4832			
PVES	passive	S	157B4833			
PVEM	12V		157B4116	157B4416		157B4516
PVEIVI	24V		157B4128	157B4428		157B4528
PVEO	12V		157B4216		157B4266	157B4217
PVEO	24V		157B4228		157B4268	157B4229

1x4 = one plug four pins;

S = super fine hysteresis

ATEX (24 V) connector code numbers

Feature		S	5 m 10 m		opt.	BFOU
Flying w	ire	super fine hysteresis			5 m	5 m
PVEH			11084101	11084109	11084092	11084098
PVES	passive	S	11084102	11084110	11084093	11084099
PVEO			11084100	11084108	11084051	11084097

Code Numbers

PVE Code Numbers for use on PVG 120

AMP code numbers

in code nameers				
Feature		anodized		
Connector		1x4		
PVEH	active	155G4094		
PVEH	passive	155G40945		
DVEO	12V	155G4282		
PVEO	24V	155G4283		

1x4 = one plug four pins

Hirschmann/DIN code numbers

Feature		anodized
Connector		1x4
PVEH	active	155G4092
PVEN	passive	155G4093
PVEO	12V	155G4272
PVEO	24V	155G4274

ATEX (24 V) connector code numbers

Feature		std.	std.	opt.	BFOU	
Flying wire		5 m	10 m	5 m	5 m	
PVEH	passive	11084104	11084112	11084096	11084107	
PVEO		11084103	11084111	11084095	11084106	

Connector code numbers

Part number Name		
157B4992	AMP CONNECTING KIT (GREY)	4 pin with housing, contact and wire sealing
157B4993	AMP CONNECTING KIT (BLACK)	4 pin with housing, contact and wire sealing
984L3165	EL-PLUG, ON-OFF black	Hirschmann DIN connector set*

Set of seals code numbers

Part number Name		Actuator		
157B4997	Set of seals	PVE for PVG 32/ PVG 100		
155G8519	Set of seals	PVE for PVG 120		
11061235	Set of seals	PVHC for PVG 32/ PVG 100		

Cables code numbers

Feature		Wire colors						Longth	Code number
Connector		pin 1	pin 2	pin 3	pin 4	pin 5	pin 6	Length	Code number
Deutsch	4 pin	white	blue	yellow	red	_	_	4 m	11007498
	6 pin	white	blue	yellow	red	black	green	4 m	11007513
АМР	4 pin	white	blue	yellow	red	_	_	4 m	157B4994
	6 pin	white	red	black	yellow	green	blue	5 m	157B4974
AMP/black coding	4 pin	white	blue	yellow	red	_	_	4 m	157B4995

Connector Code Numbers at Other Suppliers

Connector part numbers for purchase at other suppliers

connector partitions for parenase at other suppliers								
Connector		House	wire sealing (blue)	JPT contact (loose piece)	sealing mat between male-female part			
Deutsch female	4 pin	DT06-4S						
Deutschliemale	6 pin	DT06-6S		_				
AMP female/grey	4 pin	2-967059-1	828904-1	929930-1	963208-1			
AMP lemale/grey	6 pin	2-963212-1			963205-1			
AMP female/black 4 pin		1-967059-1						
AMP crim tool		169400-1						
AMP die set for crimp tool		734253-0						

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- **Electrohydraulic Power Steering**
- Electrohydraulics
- Hydraulic Power Steering
- **Integrated Systems**
- **Joysticks and Control Handles**
- Microcontrollers and Software
- **Open Circuit Axial Piston Pumps**
- **Orbital Motors**
- PLUS+1™ GUIDE
- **Proportional Valves**
- Sensors
- Steering
- **Transit Mixer Drives**

Members of the Sauer-Danfoss Group:

Comatrol

www.comatrol.com

Schwarzmüller-Inverter

www.schwarzmueller-inverter.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Sauer-Danfoss-Daikin

www.sauer-danfoss-daikin.com

Sauer-Danfoss is a global manufacturer and supplier of highquality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster. Sauer-Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.sauer-danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Sauer-Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Sauer-Danfoss representative nearest you.

Local address:

Sauer-Danfoss (US) Company Sauer-Danfoss ApS 2800 East 13th Street DK-6430 Nordborg, Denmark Ames, IA 50010, USA Phone: +45 7488 4444 Phone: +1 515 239 6000 Fax: +45 7488 4400 Fax: +1 515 239 6618

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany 1-5-28 Nishimiyahara, Yodogawa-ku

Phone: +49 4321 871 0 +49 4321 871 122

Sauer-Danfoss-Daikin LTD. Shin-Osaka TERASAKI 3rd Bldg. 6F Osaka 532-0004, Japan Phone: +81 6 6395 6066

Fax: +81 6 6395 8585